
Policy reasoning in data exchange systems (with eFLINT)

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

1 / 55



Regulated data exchange:
data exchange systems governed by regulations, agreements and policies

as an instance of

Regulated systems:
distributed software systems with embedded regulatory services derived from norm
specifications that monitor and/or enforce compliance

NWO-funded: EPI – Enabling personalized interventions (Medical)

NWO-funded: SSPDDP – Secure and scalable, policy-driven data exchange (Financial)

2 / 55



Experiment SSPDDP: Know Your Customer case study

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

Internal Policy
Sharing
Agreement

Consent Ontology Rectification

GDPR composition

Internal Policy
Sharing
Agreement

GDPR composition

SA G1 ... G nP1 ... P n

initialization initializationinitialization

M0 M1 M2

event request/response event event

Client1

Client n

Employee1

Employee n

Bank1

Bank n
Broker

3 / 55



SSPDDP: Dynamic enforcement of sharing agreement

(Article 1) A member of the consortium
has the right to request a risk assessment
computation from the broker for any (po-
tential) client

(Article 2) The data broker has the power
to oblige members of the consortium to
share information about any client the
member does business with

Bank1 Agreement Broker Enforcer Bank2

permission(request-compute(C))?

true {member of consortium}

request-compute(C)

share-data(C,Info1)

request-data(C)

request-data(C,B2)

timeout(share-data(B2,C))

demand-data(C)

share-data(C,Info2)

share-data(B2,C)

terminated(share-data(B2,C))

compute-result(C,Res)

4 / 55



Types of enforcement: ex-ante and ex-post

5 / 55



Back to basics: Access control and XACML architecture

An access request typically consists of:

• An actor

• An action (e.g., read/write)

• A resource / asset

• Optionally: A context identifier
Figure: Simplified XACML architecture – M.S. Ferdous.
“User-controlled identity management systems using mobile
device”. PhD thesis.

Fact actor

Fact asset

Act read Actor actor Related to asset Syncs with access(actor ,asset)

Act write Actor actor Related to asset Syncs with access(actor ,asset)

6 / 55



What does eFLINT offer in addition to (standard) access control

• The language makes a connection between legal primitives and computational primitives
(see upcoming slides),

• including legal obligations,

• ex-ante and ex-post enforcement of individual requests and entire scenarios
(see various examples),

• as well as abstract scenarios and properties (experimental), and

• is designed such that specifications are compositional and extensible
(see SSPDDP and DIPG case studies)

7 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

8 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

9 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

10 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

11 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

12 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

13 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

14 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

15 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

16 / 55



Foundational, normative & computational concepts

parent(A,B) = true
. . .

state

computational

parent(A,B) = true
. . .

parent(A,B) = false
. . .

transitions

■Violations of state and transition

deontic

prohibitions

permissions

obligations

of

of

of

of

of

of

potestative

powers

■ Powers have (normative)
consequences

• Deontic and potestative
terms are first-class

17 / 55



Normative reasoning – scenarios

s0 si si+1 si+k

Types of reasoning

A concrete scenario describes a single trace in the transition system

• Static ex-ante/ex-post assessment, of a given scenario {eFLINT 1.0}
• Dynamic assessment, of a given action (sequence) {eFLINT 2.0 }

• ex-post: execute action(s) and report on findings
• ex-ante: try the action(s) and decide based on report whether to perform the action

• Reasoning with abstract scenarios (e.g. planning / property checking) {eFLINT-CHECK}

18 / 55



Policy reasoner integration

Policy
Reasoner

Policy
Register

request policy version

Knowledge
Store

case update/recovery

Planner

planned actions

Access control

action
permitted?

Monitors

event
observed

Auditor

event log

Enforcer

violation
observed

Knowledge
Authority

request policy input

online &
workflow-specific

offline &
workflow-specific

generic

19 / 55



Section 1

The eFLINT language

20 / 55



Toy example – knowledge representation

(Toy Article 1) a natural person is a legal parent of another natural person if:

• they are a natural parent, or
• they are an adoptive parent

Fact person Identified by String

Placeholder parent For person

Placeholder child For person

Fact natural -parent Identified by parent * child

Fact adoptive -parent Identified by parent * child

Fact legal -parent Identified by parent * child

Holds when adoptive -parent(parent ,child)

|| natural -parent(parent ,child)

21 / 55



Toy example – powers and duties

(Toy Article 2) a child has the power to ask a legal parent for help with their homework,
resulting in a duty for the parent to help.

Act ask -for -help

Actor child

Recipient parent

Creates help -with -homework(parent ,child)

Holds when legal -parent(parent ,child)

Duty help -with -homework

Holder parent

Claimant child

Violated when homework -due(child)

Fact homework -due Identified by child

Act help

Actor parent

Recipient child

Terminates help -with -homework(parent ,child)

Holds when help -with -homework(parent ,child)

22 / 55



Toy example – scenario / case

Fact person Identified by Alice , Bob , Chloe , David

Listing 1: Domain specification

+natural -parent(Alice , Bob).

+adoptive -parent(Chloe , David).

Listing 2: Initial state

ask -for -help(Bob , Alice). // permitted: Alice is Bob ’s legal parent

+homework -due(Bob). // homework deadline passed

?Violated(help -with -homework(Alice ,Bob)). // query confirms duty is violated

help(Alice ,Bob). // duty terminated

Listing 3: Scenario

23 / 55



The DIPG case – Compliance questions

According to the GDPR (1) and the DIPG regulatory document (2):

1. What conditions need to be fulfilled by a member before making data available?

2. What conditions need to be fulfilled when accessing (3) data from the registry?

24 / 55



Modular GDPR specification

Act collect -personal -data

Actor controller

Recipient subject

Related to data , processor , purpose

Where subject -of(subject , data)

Creates processes(processor , data , controller , purpose)

25 / 55



Article 5 – processing conditions

Fact minimal -for -purpose Identified by data * purpose

Extend Act collect -personal -data Conditioned by minimal -for -purpose(data , purpose)

Listing 4: Member (1c)

Fact accurate -for -purpose Identified by data * purpose

Extend Act collect -personal -data Conditioned by accurate -for -purpose(data , purpose)

Listing 5: Member (1d)

26 / 55



Article 6 – legal processing

Fact consent Identified by subject * controller * purpose * data

Extend Act collect -personal -data

Holds when consent(subject , controller , purpose , data)

Listing 6: Member (1a)

Fact has -legal -obligation Identified by controller * purpose

Extend Act collect -personal -data

Holds when has -legal -obligation(controller , purpose)

Listing 7: Member (1c) 27 / 55



Compliance Question 1

DIPG Regulatory document – Article 4(2):

Members should transfer data to the DIPG registry in a coded form only

Fact coded Identified by dataset

Act make -data -available

Actor institution

Related to dataset

Conditioned by coded(dataset)

Holds when member(institution)

28 / 55



Compliance Question 1

Extend Act make -data -available Syncs with (Foreach donor:

collect -personal -data(controller = institution

,subject = donor

,data = dataset

,processor = "DCOG"

,purpose = "DIPGResearch ")

When subject -of(donor , dataset))

An institution can make a dataset available when (for each donor (subject) in the dataset):

• The institution is a member (DIPG Regulatory Document – Article 4(2))

• Data is coded (DIPG Regulatory Document – Article 4(2))

• Consent is given by each donor for data processing
by the DCOG for the purpose of DIPGResearch (GDPR – Article 6)

• Data should be accurate for the purpose DIPGResearch (GDPR – Article 5)

29 / 55



Compliance Question 2

Extend Act read Holds when (Exists project , institution:

approved(project ,institution) &&

selected(asset ,project) &&

affiliated(actor , institution))

An actor can read an asset when (there exists a project and an institution for which):

• The project is approved for the institution

• The asset is selected for the project

• The actor is affiliated with the institution

30 / 55



Section 2

Policy reasoning in data exchange systems

31 / 55



eFLINT reasoner as Policy Decision Point

Question 1

What conditions need to be fulfilled before
making data available?

?Enabled(write(<X>,<Y>))

Question 2

What conditions need to be fulfilled when
accessing data from the registry?

?Enabled(read(<X>,<Y>))

32 / 55



eFLINT reasoner as Policy Administration Point

Fact action Identified by READ , WRITE , DELETE

Fact decision Identified by PERMIT , DENY

Fact policy -rule Identified by actor * asset * action * decision

Derived from policy -rule(read.actor , read.asset , READ , PERMIT) When Enabled(read)

Derived from policy -rule(write.actor ,write.asset ,WRITE ,PERMIT) When Enabled(write)

Listing 8: Deriving policy rules from write and read permissions

?--policy -rule(asset = "DIPG.PMC .0001" , action=READ)

Listing 9: Instance query requesting all READ policies on a given asset

policy-rule(SintAntionius, "DIPG.PMC.0001", action=READ, decision=PERMIT)

policy-rule(PMC, "DIPG.PMC.0001", action=READ, decision=PERMIT)

policy-rule(AmsUMC, "DIPG.PMC.0001", action=READ, decision=DENY)

Figure: Output produced by the reasoner

33 / 55



Zooming out: what types of reasoning do we ambition?

1. Access control based on laws, regulations and agreements
Status: Moving from lab to practice in AMdEX fieldlab
Reasoning: Straightforward scenario/action compliance

Challenge: Nothing major, practical matters

2. Usage control based on laws, regulations and agreements
Status: To be investigated in DMI with Surf and service providers (?)
Reasoning: Straightforward scenario/action compliance
Challenge: Monitoring, sensitive meta-data

3. Auditing and accountability
Status: To be investigated in DMI with KPMG
Reasoning: Straightforward scenario/action compliance
Challenge: Monitoring, sensitive meta-data, differences in interpretation (disputes)

34 / 55



Zooming out: what types of reasoning do we ambition?

4 Finding and resolving conflicts in laws, regulations and agreements
Status: Ongoing experiments
Reasoning: Abstract scenarios, properties and ‘conformance’
Challenge: Computationally more expensive and complex reasoning

5 Planning of processing activities (e.g., workflows)
Status: To be investigated in DMI
Reasoning: Abstract scenarios, properties and ‘search’
Challenge: Computationally more expensive and complex reasoning

35 / 55



Policy reasoning in data exchange systems (with eFLINT)

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

EFRO-funded: AMDEX Fieldlab – neutral data-exchange infrastructure

36 / 55



eFLINT actors

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification 
(e.g. violation / new duty)

notification 
(e.g. of action) 

37 / 55



Normative reasoning – information flow

DSL design

normative
concepts

computational
concepts

formal
language

interpretation

natural
language

spec

application context

integration spec∗ observations

qualification

scenario

assessment

execution
context

reportpriorities

enforcement

enforcement decision

offline

offline/online

38 / 55



State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor

39 / 55



State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor

40 / 55



State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor

41 / 55



State of development

1. haskell-implementation

• Reference implementation of eFLINT DSL
• eflint-repl: interpreter (debugging, running scenarios and tests)
• eflint-server: TCP server (dynamic assessment)
• Formal syntax / semi-formal operational semantics

2. java-implementation

• TCP client
• HTTP server
• rudimentary EDSL for accessing eflint-server

3. scala-implementation

• eFLINT actors in the actor-oriented Akka framework

4. Development environments

• Jupyter notebooks
• Various experimental web-applications
• FLINT editor 42 / 55



Goals for eFLINT 3.0

Language design

• Clear separation between:
• Computational concepts: actions, events, synchronisation
• Normative concepts: prohibition, obligation, permission, power

• (eFLINT 2.0 can serve as a core/inner language to eFLINT 3.0)

• A module system, introducing namespaces and a versioning mechanism

• Modular, rule-based specification as the default through implicit extensions

Language engineering

• Additional static analyses to detect inconsistencies and possible errors

• Detailed reports as part of reasoning output to improve explainability

• User-friendly programming environment for writing and testing specifications

• Interoperability, e.g. with linked data / semantic web

43 / 55



FAQ

eFLINT is just defining a transition system with some extra conditions lying on top

– PL expert

Law is subject to interpretation and has (deliberate) open terms

– Legal expert

eFLINT is still too difficult to use

– Legal expert

44 / 55



Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

45 / 55



Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

46 / 55



Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

47 / 55



Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

48 / 55



Takeaway messages

At the University of Amsterdam, we are experimenting with approaches to enforcing
laws, regulations, agreements and contracts in (distributed) systems

The eFLINT DSL serves as a tool to demonstrate and experiment with various aspects
of our approach, with a focus on runtime enforcement using ‘regulatory services’

We are currently working on a prototype to demonstrate our approach in data exchange
systems such as the Amsterdam Data Exchange (AMdEX)

These experiments highlight the importance of software engineering concepts such as
modularity, reuse, version control, overriding/overloading mechanisms and inheritance

The next phase is to improve the practicality and usability of eFLINT through higher-
level abstractions, (domain-specific) editors, static analyses, and explainability

49 / 55



Policy reasoning in data exchange systems (with eFLINT)

L. Thomas van Binsbergen

Informatics Institute, University of Amsterdam
ltvanbinsbergen@acm.org

50 / 55



laws & regulations understanding of the law

facts, scenarioactions, objects

physical reality institutional reality

interpretation

assessment

qualification

“If the facts are against you, argue the law. If the law is against you, argue the facts.
If the law and the facts are against you, pound the table ...” -Carl Sandburg

51 / 55



Experiment SSPDDP: Know Your Customer case study

repository of
reusable norm
specifications

application
specific specs

regulatory
services

application
services

policy construction (offline)

distributed system (online)

Internal Policy
Sharing
Agreement

Consent Ontology Rectification

GDPR composition

Internal Policy
Sharing
Agreement

GDPR composition

SA G1 ... G nP1 ... P n

initialization initializationinitialization

M0 M1 M2

event request/response event event

Client1

Client n

Employee1

Employee n

Bank1

Bank n
Broker

52 / 55



eFLINT integration – overview (GDPR example)

M

Specialized specification

Reusable specification

OntologyConsent Rectification

composition

specialization

I1 ... In

initialization

online

offline

53 / 55



eFLINT integration – example

Reusable GDPR concepts

Fact controller

Fact subject

Fact data

Fact subject -of

Identified by subject * data

Specialisation to application

Fact bank // exactly one

Fact client // exactly one

Fact controller

Derived from bank

Fact subject

Derived from client

Fact data

Identified by Int

Event data -change

Terminates data

Creates data(data + 1)

Fact subject -of

Derived from

subject -of(client ,processed)

,subject -of(client ,data)

Fact processed

...

Instantiation at run-time

+bank(GNB).

+client(Alice).

+data (0).

Derived after instantiation

+controller(GNB).

+subject(Alice).

+subject -of(Alice ,0).

54 / 55



Two approaches to enforcing norms

Embedding eFLINT specifications as eFLINT actors, akin to ‘policy decision point’:

inference

eFLINT actor

Actor

changes in norms

query (e.g. permission?)

query (e.g. verification)

notification 
(e.g. violation / new duty)

notification 
(e.g. of action) 

Generating system-level policies, akin to ‘policy administration point’

55 / 55


	The eFLINT language
	eFLINT 1.0

	Policy reasoning in data exchange systems
	Goals for eFLINT 3.0


